Evaluations of Aluminum Tri-Hydroxide and Pristine Montmorillonite in Glass Fiber Reinforced Polymer for Vehicle Components

Author:

Kaleg SunartoORCID,Budiman Alexander ChristanthoORCID,Hapid Abdul,Amin ,Muharam Aam,Sudirja ,Ariawan Dody,Diharjo Kuncoro

Abstract

One of the safety requirements for the vehicle components is in terms of the flammability factor. Generally, the polymer material used for vehicle components is Unsaturated Polyester (UP). Unfortunately, this material is highly flammable. The addition of Aluminum Tri-Hydroxide (ATH) to UP is known to improve its flame retardancy, but its material strength is compromised. Moreover, the use of pristine Montmorillonite (MMT) rather than the commonly used organomodified MMT as a mixture to the ATH results in different material characteristics that could potentially minimise such a reduction of material strength. This manuscript discusses the combination of ATH and MMT in Glass Fiber Reinforced Polymer (GFRP) composites, specifically in terms of mechanical properties and flame retardancy. The increase of ATH content to UP decreases the flexural strength of GFRP, ranging from 34.3% to 63.4% lower than the neat GFRP. A slight increase of flexural strength is found in samples with ATH and MMT combinations (CA45M15), indicating that the addition of MMT does not dramatically change the flexural strength of GFRP. However, the addition of filler ATH, MMT, or a combination of both could increase the flame retardancy of GFRP. The addition of ATH leads to a slight increase of the UP initial temperature of decomposition, while the addition of MMT shows almost no notable differences. The flammability test shows that the additions of ATH, MMT or their combinations tend to decrease the rate of linear burning. Therefore, it can be concluded that the ATH and MMT could effectively improve the flame retardancy of GFRP.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3