Classification and Comparison of Crack and Dent Defects in a Metal Pipe Subjected to Variable Amplitude Loading

Author:

Mighouar Zakaria,Khatib Hamza,Zahiri Laidi,Mansouri Khalifa

Abstract

Pipelines are commonly used to transport energy over long distances. If this structure is subjected to an internal pressure of variable amplitude loading, such as water hammer waves, the structural damage caused by the presence of a defect can be exacerbated. Previous research by the authors resulted in the development of finite element models to evaluate crack and dent defects separately. Each model was used to compare and classify defects in their respective categories based on their nocivity in a metal pipe subjected to internal pressure. The primary objective of this paper is to compare the severity of various defect categories on the same scale. A numerical damage assessment model that considers the interaction effect, as well as the loading history, is used to achieve this goal. It takes the output of the two finite element models, as well as the pressure spectrum caused by the water hammer, as inputs. This model is used to analyze the effect of key parameters that influence the severity of the defects, as well as to compare and classify the various types of dent defects with the various types of crack defects found in pipes subjected to variable amplitude loading.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting the failure of plain dent pipeline subjected to cyclic loads using an artificial neural network;2023 7th IEEE Congress on Information Science and Technology (CiSt);2023-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3