Uncertain Parameters Estimation using Multi-Dimensional Analysis and Stochastic Model Updating

Author:

Yunus M. A.,M.A.S. Aziz Shah ,M.N. Abdul Rani

Abstract

Stochastic model updating based on perturbation theory has been widely applied to quantify uncertain parameters in structural systems due to its simplicity and straightforward approach. Nevertheless, the significant requirements for establishing a good correlation in the initial prediction of structural responses and small perturbations in uncertain parameters have become influential in stochastic model updating. The initial assumptions of structural parameters are often unavailable to quantify the input properties due to insufficient information about the structural system. These problems contribute to large errors in initial prediction, causing ill-posedness in sensitivity matrices and convergence difficulties caused by the local minima function in the stochastic model updating approach. In these circumstances, this study attempts to propose a novel scheme to overcome the ill-posed and converging problems in the stochastic model updating by quantifying structural parameters of the assembled structure encompassing high uncertainties such as the stiffness term of the contact joint interface by using a combination of the lattice-based exploration approach and the perturbation-based stochastic model updating method. The lattice-based exploration approach is adopted for generating samples of predicted responses from the assumed initial distribution of random parameters in the interest of improving the initial correlation of the predicted responses for producing well-condition sensitivity. Responses from each sample are evaluated in light of their experimental counterparts to estimate the optimum initial distribution of the random parameters. Then, the initial statistical properties of the parameters can be estimated by rerunning the sampling approach using the optimum distribution. As a result, stochastic model updating using the perturbation approach can be applied efficiently with the new initial distribution. The proposed scheme has been demonstrated on an assembled bolted joint structure, focusing on the contact interfaces. It is found that the proposed scheme managed to produce satisfactory predictions on the distribution of natural frequencies with only 12.5 % of total errors are recorded in comparison with the experimental data.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3