A CFD Analysis on the Influence of Upstream Surface Geometry Modifications of Clerestory Shaped Rib on Heat Transfer Characteristics of Solar Air Heater

Author:

Fernandes Dr. Dolfred Vijay,M.S. Manjunath

Abstract

Two-dimensional numerical analysis is conducted to determine the influence of upstream surface modifications of a novel clerestory shaped rib turbulator on thermal performance augmentation. The upstream surface of the rib is divided into two parts where the upper rib surface is always normal to the incoming flow and the lower rib surface, which is inclined to the flow. The elevation of the vertical surface is varied using non-dimensional approach length (h/e=0, 0.25, 0.5 and 0.75), and the inclination of the lower surface is varied using the rib angle (θ=15°, 45° and 90°). The relative roughness height and pitch of rib is fixed as 0.0421 and 12.5, respectively. RNG k-ϵ turbulence model is used in the analysis, and Reynolds number is varied from 8000-20000. The results reveal that the combined effect of flow impingement and the suppression of formation of recirculation zone leads to increased heat transfer. Lower values of non-dimensional approach length and rib angle provides a higher thermal enhancement factor. The highest increase in Nusselt number is found to be about 1.82 times that of the smooth duct at Re=8000 for h/e=0.25 and rib angle of 15°. The maximum thermal enhancement factor is found to have a range of 1.6-1.45 for an approach length of 0.25 and a rib angle of 15°.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3