Performance Characteristics of a Small Poppet Valve Crankshaft Engine in Free-Piston Engine Mode

Author:

Hanipah Mohd Razali,M. Haziq Adham Rosli

Abstract

The free-piston engine generator (FPEG) provides a novel method for electrical power generation in the range extender and hybrid electric vehicle application. In this paper, one-dimensional (1D) numerical simulations of a two-stroke poppet valve in crankshaft engine (CSE) and free-piston engine (FPE) modes are presented to illuminate the potential performance gain of a two-stroke poppet valve engine for free-piston engine generator application. The 1D numerical simulation for crankshaft and free-piston engine models focuses on the two-stroke engine performance response. Both models were subjected to variations of ignition and valve timings. The impact of lambda on engine performance was obtained. Finally, a single speed of 3000 rpm was chosen for detail performance behaviour of the free-piston engine model response. The results have shown that the CSE model has demonstrated traditional performance behaviour against ignition timing variation. In addition, FPE model performance is highly affected by both intake and exhaust valve timings as compared to the CSE model. Furthermore, CSE is superior to FPE across lambda variations for BSFC, brake thermal efficiency, brake power and bmep. These models have successfully portrayed realistic engine performance response as presented in the lambda variations simulation. When simulated at an intended operating speed of 50 Hz, the FPE model has shown poorer performance. The bmep and brake power of FPE model dropped by 3%, brake thermal efficiency dropped by 26%, and BSFC increased by 21%. This lower performance is attributed by 30% reduction in piston velocity suffers in FPE, which contributed to 13% reduction in peak cylinder pressure. Ignition delays promote better FPE performance which is able to match the CSE model. In conclusion, this paper has demonstrated the performance behaviour of a two-stroke free-piston engine model based on the baseline crankshaft engine model.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3