Numerical Analysis of Unidirectional GFRP Composite Mechanical Response Subjected to Tension Load using Finite Element Method

Author:

Zakki Ahmad Fauzan,Hadi Eko Sasmito,Windyandari Aulia,Ilham Rizaldy

Abstract

Composite material is a well-known structural material which is increasingly adopted as an engineering structure material. Glass fiber reinforced polymer offers the lightweight and high strength characteristics that is required for the modern industry, such as aviation, automotive, wind power, and marine technology. One of the important mechanical characteristics of the composite materials are the tensile properties, because it is well known as the material strength. Therefore, the investigation of mechanical response on the glass fiber reinforced polymer (GFRP) tensile test using numerical analysis is important for the estimation of structural response of the GFRP complex structure, such as boat construction. The objective of this research is to assess and estimate the mechanical response of the GFRP composite material subjected to tension load using finite element method. The linear transversely isotropic model is developed to estimate the unidirectional glass fiber GFRP with the configuration of fiber orientation angles of 0°, 30°, 45°, 60° and 90°. The results show that FE simulation are capable to detect the specimen response during the tensile test. The maximum discrepancy of the estimated stress strain diagram is about 16.5% to 32% compared to experimental data. The larger orientation angle has shown the larger discrepancy value. It is found that the increment of discrepancy value is generated by the nonlinearity behavior of the material due to the domination of polymer material behavior on the large orientation angle. Otherwise, the FE models have estimated accurately the ultimate strength, maximum displacement and fracture load. It can be concluded that the linear transversely isotropic model is adequately accepted as the estimation method of the GFRP composite structure response.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3