Author:
Kusunose K.,Akagi T.,Dohta S.,Kobayashi W.,Shinohara T.,Hane Y.,Hayashi K.,Aliff M.
Abstract
In the case of damp and wet pipes, pipe inspection robots using pneumatic actuators offer advantages such as no electrical leakage and short circuit. In the previous study, a robot consisting of sliding/bending mechanisms using parallel arranged three extension type flexible pneumatic actuators and two holding mechanisms was successfully developed. In order to use the robot in thinner pipe, a novel and simpler propulsion mechanism utilising the difference of frictional force moving forward and backward are proposed and tested in this work. There are two mechanisms, which are “wriggling type” and “cilia type”. The “wriggling type” mechanism moves forward by wriggling its body while the “cilia type” mechanism moves by using plate type cilia that covered on the mechanism. Both mechanisms have been tested in the pipeline. As a result, it can be confirmed that the cilia type propulsion mechanism can travel in the pipe with accumulated water. It can be found that the mechanism can easily travel through corners while twisting its body by giving bending motion toward any direction.
Publisher
Universiti Malaysia Pahang Publishing
Subject
Mechanical Engineering,Automotive Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献