Experimental Analysis on the Transduction Coefficient of a Non-Linear Electromagnetic Energy Harvesting Device with Softening Stiffness

Author:

Low P. S.,Ramlan R.,A. Ghani H.,Muhammad N. S.

Abstract

Nonlinear energy harvesting devices in the form of stiffness nonlinearity have emerged as among the effective solutions to overcome the performance limit of linear energy harvesting devices. However, up to now, researches on the nonlinear devices are only focusing on the ability to widen the bandwidth while the limit of employing linear transduction coefficient in a nonlinear system has yet to be heavily discussed. This paper investigates on the transduction coefficient for both linear and nonlinear systems of an electromagnetic energy harvesting device as a function of the excitation frequency. It is proven that the transduction coefficient of the nonlinear device is larger than its equivalent linear device, especially in the multi-stable solutions region. In common practice, the nonlinearity in the nonlinear system is considered weak, and its transduction coefficient is assumed to converge to the one produced by the linear system. The limits to which the transduction coefficient of a linear system can be employed on the nonlinear system were drawn based on the experimental analysis conducted on the proposed device. The device was designed to perform as a linear or nonlinear system, where the degree of nonlinearity was changed by varying the gap between the magnets. The limit of the transduction coefficient was determined from the analysis of the harmonic ratio. The results show that the linear transduction coefficient is valid to be employed to the nonlinear system when the harmonic ratio is less than five per cent at the multi-stable solutions region.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Dynamics of a Softening-Hardening Oscillator for Energy Harvesting in Industrial Applications;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

2. An adjustable device to adaptively realise diverse nonlinear force-displacement characteristics;Mechanical Systems and Signal Processing;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3