Models for Machining Accuracy in Multi-Tool Adjustment

Author:

Yusubov N.D.,Abbasova H.M.

Abstract

The article discusses the technology capabilities of multi-purpose CNC machines, and possible options for implementing parallel multi-tool processing. It was revealed that the technological capabilities of these machines are used at best by 50% in factories. This is due to the lack of recommendations for the design and use of such adjustments for these machines. To this end, generalised lattice matrix models of the accuracy of multi-tool machining have been developed in order to fulfill the requirements of algorithmic uniformity models and their structural transparency. The use of lattice matrices greatly simplifies the error in model of multi-tool machining and makes it extremely visual. Also, full-factorial distortion models and scattering fields of the dimensions of multi-tool machining performed on modern multi-purpose CNC lathe machines have been developed to take into account the angular displacements of the workpiece when machining parts with prevailing overall dimensions. They take into account the flexibility of the technological system for all six degrees of freedom to identify the influence degree of complex of technological factors on the machining accuracy (structure of multi-tool adjustment, deformation properties of subsystems of a technological system, cutting conditions). A methodology has been developed for determining the complex characteristics of compliance of a technological system. On the basis of the developed accuracy models in spatial adjustments, it is possible to develop recommendations for the design of adjustments for modern multi-purpose machines in CNC turning group (creation of CAD of multi-tool machining). Thus, it is possible to achieve a number of ways to control multi-tool machining, including improving the structure of multi-tool adjustment, calculating the limiting cutting conditions.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3