The Influence of Drop Panel's Dimensions on the Punching Shear Resistance in Ultra-High-Performance Fiber-Reinforced Concrete Flat Slabs

Author:

Muhammed Twana Ali,Rahim Karim Dr. Ferhad

Abstract

Ultra-high performance fiber reinforced concrete (UHPFRC) is a high-performance cementitious material with enhanced tension, compression, and toughness, strengths in the post crack region with high ductility, toughness, and durability. The companies prefer to use it to construct highly durable structures such as high-rise buildings, towers, and bridges. In addition, the thickness of the flat slab produced by UHPFRC might be thinner than the conventional concrete. One problem that has always been a concern in a flat slab is the punching shear failure since this failure is brittle and occurs suddenly without any previous notice. Besides, the position of the critical section for punching shear could be changed based on the thickness of the drop panel and the inclusion of fiber in the concrete. This paper highlights the effect of drop panels dimension on the punching shear resistance in UHPFRC flat slabs. The four two-way interior UHPFRC supported flat slab panels, consisting of one control flat slab without drop panels and three-flat slabs with different sizes of drop panels (10.5%,14.5%, and 19%) of the total area of slab drop panels, tested under punching load. Results indicated that the covered area of flat slabs by drop panel around 10.5% improved punching load up to %20 and 37% at the crack and ultimate loads. Furthermore, the test results show that the efficient covered area for resisting punching was 10.5% of the total area of the tested slab. Besides, the deflection values, strain in reinforcement and concrete, rotation at supports, and the inclination angles of cracks were improved due to the stiffness enhancement in the flat slabs.

Publisher

Universiti Malaysia Pahang Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3