A new nine-node element for analysing plates with varying thickness using basic displacement functions

Author:

Tayyebi K.,Haghighi A. M.,Attarnejad R.

Abstract

The capability of the Finite Element Method in producing accurate and efficient results largely depends on the shape functions adopted to frame the displacement field inside the element. In this paper, a new nine-node Lagrangian element was developed to analyse thin plates with varying cross-sections using the shape functions obtained for non-prismatic straight beams with minimum number of elements. The formulated shape functions, which represent vertical displacements and rotations throughout elements, are rooted from a purely mechanical functions called Basic Displacement Functions (BDFs). These functions are obtained by implementing the force method in Euler–Bernoulli beam theory, which ensures that equilibrium equation is satisfied in all interior points of elements. To verify the competency of the proposed element, solutions for the static analysis of isotropic rectangular plates under various loading conditions, together with free vibration analysis of plates with linear thickness variation were obtained and compared with the previous literature. Results showed that the proposed nine-node Lagrangian element was computationally more cost-effective compared to other competing methods when small number of elements is employed.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3