Regeneration of geothermal-sludge based sodium silicate catalyst for transesterification of palm oil with methanol

Author:

Perdana I.,Lenny Lenny,Bendiyasa I. M.

Abstract

Sodium silicate synthesized from geothermal sludge of a geothermal power plant in Indonesia was applied as a solid catalyst to catalyze transesterification reaction of palm oil with methanol. In our previous study, it has been found that the catalyst deactivated due to hydrocarbon contamination on its surface. In the present work, 3 (three) different regeneration methods were studied for reactivation of the catalyst. The studied methods were: 1) calcination at 400oC for 3 hours with a ramp of 20°C/minutes, 2) 1x-washing with methanol at room temperature, and 3) 3x-washing with methanol at 60°C. The performance of the catalyst was studied by sequential reaction batches to monitor the reaction yield from time to time. The sequence consisted of 4 (four) transesterification reaction cycles, with a catalyst regeneration process before reused in subsequence cycle. Experimental results showed that although none of the regeneration processes regained catalyst activity as high as that of the freshly-activated catalyst, the third regeneration method, i.e. 3x-washing with methanol at 60°C regained higher catalyst activity compared to the other two studied methods. The method could maintain the reaction conversion at about 50% after four cycles of reaction and regeneration, Furthermore, the kinetics of the catalytic transesterification reaction was studied by fitting the experimental data with calculated yield obtained from mathematical modelling. It was found that among the first, second, and third order reaction kinetics, the experimental data was best fitted by the calculated results from the first order reaction kinetics. Results from this work suggested that even though 3x-washing regeneration of sodium silicate catalyst with methanol at 60°C offered relatively high reactivation, further study for improvement is still needed.  

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3