Effect of semi-solid forming temperature and heat treatment on mechanical properties and microstructure of Mg-Al-Zn Alloy (AZ91D) for automotive light application

Author:

M. Kamal M.R.,Bazilah N.F.,Idris M.H.,Salleh M.S.,W. Ali W.F.F.

Abstract

Magnesium alloy usage in manufacturing engineering components resulting in weight reduction and as a consequence, reduction in fuel and energy consumption. Magnesium has a relatively low density and roughly 30% lighter than aluminum. However, magnesium is considered to be difficult to deform because of the HCP structure. In this present work, the effect of semi-solid forming temperature and heat treatment on mechanical properties of Mg-Al-Zn were investigated. Mg-Al-Zn ingot was machined into a billet and formed with three different temperatures and underwent T4 heat-treatment process. To determine the mechanical properties and microstructure of the magnesium alloy, tensile and hardness test were performed and the result indicates that the highest average maximum tensile stress was achieved at 209 MPa at 530ºC after forming with T4 heat treatment and highest hardness value was at  21.44 HRB at 560ºC. On the other hand, effect of the forming temperature gives impact to the evolution of the microstructure from large grain size (as-cast) to the smaller grains size (0.00797mm2) forming at 560°C. This relate to the extensive dynamic recrystallization (DRX) occurs during forming and Mg-Al-Zn was sensitive with heat either direct or indirect heating method.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3