Thermal behavior of natural convection flow in an inclined solar air heater

Author:

A. Neama Mohammed,Mustafa Ayad T.ORCID

Abstract

The thermal behavior of hot air in a natural convection mode on a solar absorber-plate has not been, so far, modeled experimentally. The present work aimed to assess the performance of the inclined solar air heater [SAH] experimentally by investigating the temperature distribution field in the natural convection flow. The solar plate collector is designed based on the aspect ratio of length to height, L / H, of 6 and 12. The measurements are carried out for the collector tilt angles of 30°, 45°, 60° and 75°. The present investigation demonstrates the temperature distribution of hot air floated in an inclined channel of the SAH. The investigation showed 2D thermal stratification increases when increasing the distance along the collector plate, which looks clear in the SAH with a height of 10 cm. The results of the study show that the thickness of the thermal layers increases with increasing the tilt angle from 30˚ to 75˚. The reason dates back to increasing the buoyancy force of the hot air over the absorber. The results demonstrated that the air temperatures for the height of 0.1 m and 45˚ tilt angle are higher than that for the height of 0.2 m by 23%.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical evaluation of air gap effect on double-glazed solar air heater performance;Numerical Heat Transfer, Part A: Applications;2023-03-21

2. Natural convection heat transfer on an inclined unglazed solar absorber-plate: Experimental investigation;PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3