Prediction of fatigue life of aluminum 2024-T3 at low temperature by finite element analysis

Author:

Mazlan S.,Yidris N.,Zahari R.,Gires E.,Majid D.L.A.,Ahmad K.A.

Abstract

The change in material properties at low temperature has always been one of the concerned design factors in aircraft industries. The wings and fuselage are repeatedly exposed to sub zero temperature during cruising at high altitude. In this study, fatigue tests were conducted on standard flat specimens of aluminum 2024-T3 at room temperature and at -30 °C. The monotonic and cyclic loading tests were conducted using MTS 810 servo hydraulic machine equipped with a cooling chamber. The monotonic tests were conducted at a crosshead speed rate of 1 mm/min and the cyclic tests at a frequency of 10 Hz with a load ratio of 0.1. The experimental data obtained, such as the yield strength, ultimate strength and S-N curve were used as the input parameters in ANSYS Workbench 16.1. This close agreement demonstrates that the isotropic model in ANSYS workbench is essential in predicting fatigue life. The increase in stress parameter causes fatigue life to decrease. Besides, the decrease in temperature causes the total fatigue life to increase.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3