Detailed performance analysis of parabolic trough collectors including geometric effect

Author:

Kasem Mohamed Abdou Mahran

Abstract

Parabolic trough collectors (PTCs) have been known for years as one of the leading methods for extracting energy from the sun. In the present work, the performance of PTCs was investigated. However, its performance needs some improvement to be integrated in more and wide range of applications. This idea motivated the author to investigate the performance of parabolic trough collectors in detail. Thus, in the present work, the performance of parabolic trough collectors is investigated. The effect of eight geometric and inlet variables on the PTC performance was evaluated. Two performance factors , the temperature difference and thermal efficiency, were selected. The effect of inlet condition, including inlet mass flow rate and inlet flow temperature reflector geometry, including reflector length and width,receiver diameters, including inlet and outlet reciever diameters, and cover diameters, including the inlet and outlet cover diameters on these PFs was assessed. Eight thermal working fluids were considered. A non-linear mathematical model was developed for PTC and implemented into MATLAB code where an iterative technique was used to conduct the present analyses. Level curves were generated to study the PTC key performance parameters. The curves revealed that the maximum values of the PFs and maximum range of change in these PFs occurred when the inlet conditions were varied. Changes in the inlet temperature, and changes in the reflector geometry yielded the highest and second-highest values. The cover geometry had the minimum effect on the PFs. Moreover, the best maximum efficiency, best maximum temperature difference, and maximum range of efficiency change were obtained for water, air, and carbon dioxide, respectively. The effect of inlet temperature is more significant than the mass flow rate effect on the thermal efficiency, whereas this effect is reversed in case of the temperature difference, by which the mass flow rate exerts the least influence on the temperature difference.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3