Mechanical characterization of 3/2 fibre metal laminate materials

Author:

Mat Rejab Mohd Ruzaimi,Rani M.F.,Ibrahim M.I.,Romli N.K.

Abstract

Development of lightweight materials onto vehicle bodies, especially in the automotive sector is seen as one of the best alternative solutions in order to reduce fuel consumption and decrease harmful emissions produced by the emission. Reducing in weight of a vehicle can improve fuel efficiency with no prejudice to safety strength requirements. Fibre metal laminate (FML) is hybrid composite structure based on thin sheet of metal alloys and plies of fibre reinforced polymeric materials which offer the ability of superior mechanical properties such as lightweight, high fatigue growth resistance and high strength and stiffness. Multi-material auto bodies will allow optimal material selection in structural components for higher performance and lower cost. This study aims to fabricate and investigate the failure behaviour of a 3/2 layer fibre metal laminate subjected to the quasi-static indentation test. The FML is constructed from aluminium 2024-T3 and layered with composite materials CFRP, GFRP and SRPP. The crosshead speed test analysis ran in different parameters on 1 mm/min, 5 mm/min, 10 mm/min and 50 mm/min, respectively in quasi-static indentation test. The experimental performances of each specimen were compared to predict the behaviour and performance of the FML composite. The test indicates that varying crosshead speeds have influenced the affected region of the FML, causing debonding on the laminate as a result of continued loading.

Publisher

Universiti Malaysia Pahang Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3