Investigation of the aerodynamic effects of bio-inspired modifications on airfoil at low Reynolds number

Author:

Demir Hacımurat,Kaya Batuhan

Abstract

A numerical study was performed to investigate flow behaviors around bio-inspired modified airfoils compared with NACA 4412 airfoil at Re=5.8x104 by solving the two-dimensional, RANS equations with k-ω STT turbulence model. The obtained results reveal a rather abrupt decrease of lift at stall for the NACA 4412 airfoil in contrast to the mild stall depicted by the top-modified airfoil. As compared to the experimental results of the profiled airfoil in the literature, the characteristic behavior of the variation in the lift coefficient shows resemblance. It is seen that from the velocity distribution results, fluid flowed smoothly along the streamlined nose of NACA 4412 airfoil until α=4⁰ and streamlines adhered well for both airfoils at low angles (0⁰, 2⁰). Smaller circulation bubbles were noticed to settle in the canyons of the corrugated cross-section of the top-modified airfoil. In the wake region of the modified airfoil, there is no obvious large flow separation or circulation region at low angles of attack. However, the blue regions of the dimensionless velocity over the NACA 4412 airfoil and bottom-modified airfoil were narrower than over the top-modified airfoil. The recirculation zone over the airfoil started to enlarge, and the rolling up of the trailing-edge vortex appeared. After α=12⁰, the adverse pressure gradient on the suction side of the airfoils became more intense. In the wake zones, it was seen that the circulation regions grew remarkably and became largest as the angle of attack rose to α=16⁰, which pointed out increased drag forces of airfoils.

Publisher

Universiti Malaysia Pahang Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3