Impact of eave and roof pitch on cross ventilation for an isolated building with sawtooth roof

Author:

Moey Lip Kean,Cheong Seng Keat,Zobaied Md Akkik Al,Tai Vin Cent,Go Tze Fong,Chong Perk Lin

Abstract

An eave refers to an extension attached to the building roof to protect the interior space from direct solar radiation and improve the performance on cross ventilation. In this study, the impact of eave inclination angle and roof pitch of an isolated sawtooth roof building on cross ventilation were investigated. The eave configurations at either windward or leeward openings were included. 3D steady Reynolds-Averaged Navier-Stokes (RANS) equation in combination with the Shear-Stress Transport model (SST k-ω model) was used for the Computational Fluid Dynamics (CFD) simulations. Grid sensitivity study was carried out and the performance of cross ventilation was evaluated based on the non-dimensional velocity magnitude, spatial distribution of pressure coefficient as well as the ventilation rate of the building. For the simulation model with 55° roof pitch, it is observed that a region with high velocity magnitude formed on top of the leeward eave due to the higher roof pitch and presence of the leeward eave. Results also indicated that the building model with 90° leeward eave and 55° roof pitch has the highest increment in ventilation rate which is 7.16%. On the other hand, the building model with 90° windward eave has the highest pressure coefficient because more blockage of airflow is caused by a steeper roof as the roof pitch of the building increases. Furthermore, the building model with 90° leeward eave shows a larger region with negative pressure at the leeward façade indicating higher airflow leaving the leeward opening. Therefore, the airflow behavior and characteristic are both dependent on the roof pitch and eave inclination angle for a naturally ventilated building.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3