Experimental investigation of Silver / Water nanofluid heat transfer in car radiator

Author:

Jarrah H. T.,Mohtasebi S. S.,Ettefaghi E.,Jaliliantabar F.

Abstract

Currently available fluids for heat transfer including refrigerants, water, ethylene glycol mixture, etc., have been widely exploited in various fields, especially in automobile cooling systems, for many years. However, these fluids possess poor heat transfer capability which means that to achieve acceptable heat transfer activity, high compactness and effectiveness of heat transfer systems are essential. This research work concentrates on preparation and use of water based Silver containing nanofluids in automobile cooling system. Nanoparticles volume fraction, fluid inlet temperature, coolant and air Reynolds numbers were optimized so that the heat transfer performance of the car radiator system was totally improved. It was found that increasing these parameters leads to enhancement of the heat transfer performance. In the best condition, the Ag/water nanofluids with low concentrations could amend heat transfer efficiency up to 30.2% in comparison to pure water.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat transfer evaluation of single and hybrid nanofluids as cooling media in car radiators: A 3D-CFD approach in flat tubes;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-02-16

2. Heat transfer performance of nanofluids in heat exchanger: a review;Journal of Thermal Engineering;2023-01-31

3. Heat Transfer and Exergy Analysis of a Shell and Tube Heat Exchanger using PGW based ZnO Nanofluids;International Journal of Automotive and Mechanical Engineering;2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3