Improving the performance of a diesel engine by changing injectors characteristics after reduction on the compression ratio
-
Published:2021-06-10
Issue:2
Volume:15
Page:8153-8168
-
ISSN:2231-8380
-
Container-title:Journal of Mechanical Engineering and Sciences
-
language:
-
Short-container-title:JMES
Author:
Chamehsara Saeed,Karami Mohammadreza
Abstract
In order to repair internal combustion engines, sometimes it is necessary to replace the components of these engines with each other. Therefore changes in engine performance are inevitable in these conditions. In the present study, by changing the coneccting rod and the crank of the OM457 turbo diesel-fueled engine with the OM444, it was observed that the performance of the engine decreases. Numerical simulations have been carried out to study the Possible ways to mitigate this reduction. One way to achieve this goal is to change the fuel injector’s characteristics such as, fuel injector’s nozzle hole diameter, number of nozzle holes, and start time of fuel injection. In this study, the impact of these parameters on the performance and emissions of these engines were analyzed. Another scenario is an increase in inlet fuel and air by the same amount. The results indicate that By reducing the diameter of fuel injector holes and hole numbers, the performance of the engine was increased. on the other hand, the NOx emissions were increased while the amount of soot emission decreased. The same results were concluded by retarding the start time of injection. Subsequently, a case study of changing fuel injector parameters for mitigation of decreased performance was performed. These parameters were simultaneously applied, and results were compared. The performance of the engine with improved injector’s characteristics was close to the main OM457. Similar results were obtained by increasing the amount of inlet air and fuel.
Publisher
Universiti Malaysia Pahang Publishing
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献