Optimization on fishing net porosity of twin pontoon floating breakwater in waves

Author:

Fakhruradzi Sheikh,A. Fitriadhy

Abstract

Chaotic process in wave passing through pores on the attached fishing net between twin pontoons of floating breakwater (TPFB) may lead to several severe problems relating to the hydrodynamic performance of such coastal structure. In presence of relatively fine pores, the wave transmission coefficient (Kt) tends to diminish while the reflection coefficient (Kr) will likely increase, or vice versa for coarse ones. The circumstance requires a complete design optimization study into obtaining an optimum porosity. This paper presents optimization on the fishing net porosity (n) of TPFB using artificial intelligence (AI) model. Here, a multi-objective evolutionary algorithm with various genetic parameters is proposed to search for optimum n ratio through primarily minimizing transmission (Kt) and reflection coefficients (Kr) while maximizing energy dissipation coefficient (Kd). In addition, a computational fluid dynamic (CFD) programme is developed using an extended Reynolds Average Navier-Stokes (RANS) solver for a solid-permeable obstacle. Several parameters such as wavelengths and porosity ratios including a set of optimization criteria, have been taken into account in the simulation, where the optimum solution is then selected from various populations. Meanwhile, the optimum result will be qualitatively evaluated, in which it is visualized by the characteristic patterns of induced energy dissipation. The results revealed that the optimization algorithm is effectively capable of determining global trade-offs between Kt, Kr, and Kd. As compared to the existing model, Kt and Kr decrease to less than 0.85 and 0.42 respectively, whereas Kd was increased up to 0.34 resulting in optimum hydrodynamics of TPFB indicated by further enhancement in the rate of energy dissipation across TPFB entanglement. For validation, the numerical model can fairly simulate well on the hydrodynamics of structure.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of swarm intelligence for dynamic properties of moored floating structures using two-dimensional fluid dynamic program;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3