Study on stripping phase conditions on the levulinic acid extraction using supported liquid membrane

Author:

Rajendran V.,Saufi S. M.,Zahari M. A. K.,Mohammad A. W.

Abstract

Supported liquid membrane (SLM) is the most effective technique to extract and recover the desired product from the biomass products in a single step. The study of the operation parameters in SLM system is very important to improve the yield of extraction and recovery of the product. In this study, different types of stripping agents such as sodium hydroxide (NaOH), sodium carbonate, hydrochloric acid, trimethylamine, and water were tested in the SLM system to extract levulinic acid (LA). By using 0.3 M trioctylamine in 2-ethyl-1-hexanol as liquid membrane phase, it was found that NaOH was the best stripping agent to extract LA. The concentration of the NaOH stripping agent was varied from 0.25 M to 1 M. The best stripping agent concentration was 0.5 M, which gave an LA extraction of 86% from a 10 g/L LA aqueous solution. The flow rate of the feed and stripping phase was investigated from 25 mL/min to 125 mL/min. SLM operated at 75 L/min was found to be adequate in reducing the boundary layer thickness at both sides of the SLM phases without any leakage of the liquid membrane and breakage of the matrix support. At the best stripping condition, 89% of the LA was extracted using 0.5 M NaOH that operated at flow rate of 75 mL/min.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3