Author:
Waziralilah N. Fathiah,Abu Aminudin,Lim M. H.,Quen Lee Kee,Elfakarany Ahmed
Abstract
The vast impact on machinery that is rooted by bearing degradation thus pinpointing bearing fault diagnosis as indubitably very crucial. The research is innovated to diagnose the fault in bearing by implementing deep learning approach which is Convolutional Neural Network (CNN) that has superiority over image processing and pattern recognition. A novel model comprises of Gabor Transform and CNN is proposed whereby Gabor Transform is utilized in representing the raw vibration signals into its image representation. The CNN architecture is augmented for a better accuracy of the bearing fault diagnosis model. To date, the method combination has never been deployed in establishing fault diagnosis model. Plus, the usage of Gabor Transform in mechanical area especially in bearing fault diagnosis is meagrely reported. Scant researches in mechanical diagnosis are dedicated to work on the image representation of the vibration data whereas the CNN works better when fed by images input due to its unique strength of CNN in images processing and spatial awareness. At the end of the research, it is perceived that the proposed model comprises of Gabor Transform and CNN can diagnose the bearing faults with 100% accuracy and perform better than when CNN is fed with raw signals.
Publisher
Universiti Malaysia Pahang Publishing
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献