Bearing fault diagnosis employing Gabor and augmented architecture of convolutional neural network

Author:

Waziralilah N. Fathiah,Abu Aminudin,Lim M. H.,Quen Lee Kee,Elfakarany Ahmed

Abstract

The vast impact on machinery that is rooted by bearing degradation thus pinpointing bearing fault diagnosis as indubitably very crucial. The research is innovated to diagnose the fault in bearing by implementing deep learning approach which is Convolutional Neural Network (CNN) that has superiority over image processing and pattern recognition. A novel model comprises of Gabor Transform and CNN is proposed whereby Gabor Transform is utilized in representing the raw vibration signals into its image representation. The CNN architecture is augmented for a better accuracy of the bearing fault diagnosis model. To date, the method combination has never been deployed in establishing fault diagnosis model. Plus, the usage of Gabor Transform in mechanical area especially in bearing fault diagnosis is meagrely reported. Scant researches in mechanical diagnosis are dedicated to work on the image representation of the vibration data whereas the CNN works better when fed by images input due to its unique strength of CNN in images processing and spatial awareness. At the end of the research, it is perceived that the proposed model comprises of Gabor Transform and CNN can diagnose the bearing faults with 100% accuracy and perform better than when CNN is fed with raw signals.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3