Effect of heat treatment on the tribological performance of electroless quaternary nickel alloy

Author:

Zaimi M.,Azran M. N.,Kasim M. S.,M. Kamal M. R.,Othman I. S.,Lau K. T.,Widodo T. D.,Sofian A. H.

Abstract

Heat treatment of nickel-based alloy can increase the alloy’s hardness as well as the wear resistance properties. Nevertheless, the effect of heat treatment on the quaternary Ni alloy coating properties produced from electroless deposition bath is less known due to its composition uniqueness. In this study, Cu and Co are added in the Ni-P alloy matrix using hypophosphite-based Electroless Ni deposition method on mild steel substrate in acidic and alkaline bath. The coatings are then heat treated at 623 K for 3600s. The coatings hardness is measured using microVickers hardness tester and the surface morphology of the coatings are studied using both Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis. X-ray fluorescence (XRF) measurement is used to measure the coatings compositions. The wear behavior of the coatings is also investigated before and after heat treatment using ASTM G-99. The coatings from acidic-based bath produces Ni-Cu-Co-P alloy coating while the alkaline-based bath produces Ni-Co-Cu-P alloy based on XRF analysis. Results show that the hardness increases more than 20% for acidic-based bath and 40% for alkaline-based bath coating. The highest increment is the Ni-Co-Cu-P alloy, from 553.3 HV to 991.3 HV after heat treatment. The grain refinement of the coatings can be observed after heat treatment in SEM observation. This is proved by the XRD measurement results where polycrystalline Ni (111) formation is seen after heat treatment overshadowing the Cu (111) and Co (111) peaks. Ni phosphide species are also formed after the heat treatment. The polycrystalline Ni and the Ni phosphide formation, as well as the existence of Co and Cu in the alloy deposits reduces the wear rate significantly after the heat treatment.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3