Author:
Azizi M. A.,Ariffin A. K.
Abstract
This paper presents the peridynamic numerical method for nonlinear viscoelastic creep behaviour which consists of primary, secondary, tertiary creep stages and creep rupture. A nonlinear viscoelastic creep constitutive equation based on internal state variable (ISV) theory which covers four creep stages is examined. The viscoelastic equation is substituted into material parameter in the peridynamic equation to derive a new peridynamic method with two time parameters i.e. numerical time and real time. The parameters of the viscoelastic equation is analyzed and evaluated. In validating this peridynamic method, a comparison is made between numerical and experimental data. The peridynamic method for nonlinear viscoelastic creep behaviour (VE-PD) is approved by the good similarity between numerical and experimental creep strain curves with overall difference of 10.67%. The nonlinearity of experimental and numerical data is adequately similar as the error between experimental and numerical curves of secondary stage strain rate against load is 8.022%. The shapes of fractured numerical specimen show good resemblance with the experimental result as well.
Publisher
Universiti Malaysia Pahang Publishing
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献