Abstract
In this paper, we propose an adaptive sliding mode control strategy for a 3D cable-driven parallel robot. The proposed control technique is widely used for dealing with nonlinear systems uncertainties and for improving the robot performance in terms of tracking a desired path. The main contribution of this work is firstly: the graphical user interface (GUI) witch presents a point-to-point command, thus by the visualization of the end-effector position. Secondly, the sliding mode control is modeling for applied to the dynamic model for different trajectories in order to test the accurate tracking of the robot to a desired path. The effectiveness of the proposed control strategy is demonstrated through different simulation results.
Publisher
Universiti Malaysia Pahang Publishing
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献