A comprehensive study on the buckling behaviour of woven composite plates with major aerospace cutouts under uniaxial loading

Author:

Rayhan S. B.

Abstract

Current research paper presents a comprehensive study based on Finite Element Method (FEM) to understand the effect of cutout shape and area on the buckling behaviour of E-glass composite plates. Considered plate has a dimension of 150 mm × 75mm × 3mm where loading edges are simple supported (shorter side) and other two edges are free. Major aerospace cutout shapes i.e. circular, square, elliptical (horizontal and vertical) and diamond are studied to understand their effect on plates’ critical buckling load. FE code Ansys is adopted to investigate the case studies. A limited number of experimental tests are also carried out in order to validate the FE code results. Overall, a good agreement between experimental and FE code results are found. From finite element analyses, it is found that for any cutout shape, as the cutout area increases, buckling load decreases significantly. Moreover, increasing the plate thickness by 0.5 mm can raise the buckling load up to 50%. More importantly, fibre orientation angle has most significant effect on the critical buckling load of plates where fibre orientation aligned with loading direction can increase the plates’ critical buckling load from 2.6 to 2.8 times than aligned with 900.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3