Multiaxial fatigue analysis for the shaft of a 100 MW hydro-power generator

Author:

Mantilla C. A.,Valdés J. A.,Casanova F.

Abstract

This paper presents a stress and fatigue life analysis for the shaft of a 100  hydro-generator. Normal and shear stresses were measured at the cylindrical section of the shaft at several power levels. A finite element model was developed to find points with stress concentration and the corresponding stress concentration factor. Analytical models taken from the literature were implemented to calculate stresses during phase-to-ground and phase-to-phase failure. Stresses were linked with the generation history of the machine taken each hour during one year to obtain the stress history. With the stress history, the Wang-Brown multiaxial fatigue model and the Miner’s rule were used to estimate the fatigue life. Stresses on the shaft were found to be dependent on the generated power. Operation at partial load (between 30 and 60% of full load) was found to produce higher vibration in comparison with operation at power greater than 60% of full load. Changing the power level produced higher damage than the vibration produced during operation at a steady state condition. It was found that the shaft has a practically infinite life even when the damage produced during electrical failure was considered. 

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3