Spatial trend analysis of significant wave heights in the Kara Sea

Author:

Kruglova E. E.1ORCID,Myslenkov S. A.2ORCID,Platonov V. S.2ORCID

Affiliation:

1. Lomonosov Moscow State University; P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences

2. Lomonosov Moscow State University

Abstract

 Over the past decades, the extent of sea ice in the Arctic, including the Kara Sea, has been diminishing. This phenomenon has a direct impact on wind waves as the increased expansion of ice-free water influences wave height. Furthermore, alterations in the ice cover also lead to modifications in atmospheric circulation, necessitating a concurrent analysis of wind and waves to refine the understanding of their interrelationships. In this study, wave modeling data were employed using the WAVEWATCH III model and NCEP/CFSR/CFSv2 reanalyzes. Calculations were performed on a non-structural computational grid. The grid covers the Barents and Kara Seas, as well as the entire northern part of the Atlantic Ocean. The spatial resolution varies from ~ 700 m for the coastal zone of the Kara Sea, to ~ 20 km in the open part of the Kara Sea, covering the period from January 1, 1979 to December 31, 2021. Subsequently, average significant wave heights (SWH), maximum SWH, and the 95th percentile of SWH were computed for each grid node on both monthly and yearly basis. The annual values were analyzed for trends and their significance. Calculations were conducted for both the entire period and ice-free period. Positive trends in annual mean values were observed throughout the sea, with the maximum trend occurring near the boundary with the Barents Sea, barely exceeding 0.2 m/10 years. The northern and northeastern parts of the sea were characterized by significant positive trends of the maximum SWH values. Maximum trend values for the 95th percentile of SWH were also evident in the northern part of the Kara Sea. For the ice-free period, maximum trend values were notable for both the annual mean and the 95th percentile of SWH in the northern part of the sea (maximum trend values are approximately 0.25 m/10 years and 0.5 m/10 years, respectively). Significant positive trends in the annual mean SWH were characteristic of the southern part of the sea, while the largest and significant trends for maximum wave heights were observed in the northeast. The assessment of the contribution of wind and ice regimes to the variability of wind waves remains a subject of discussion.

Publisher

FSBI Arctic and Antarctic Research Institute (FSBI AARI)

Reference25 articles.

1. Matveeva T.A., Semenov V.A. Regional features of the Arctic Sea ice area changes in 2000–2019 versus 1979–1999 periods. Atmosphere. 2022;13(9):1434. https://doi.org/10.3390/atmos13091434

2. Alekseev G.V., Aleksandrov E.I., Glok N.I., Ivanov N.E., Smolyanickij V.M., Harlanenkova N.E., Yulin A.V. Evolution of the Arctic Sea ice cover area in the context of modern climate change. Issledovanie Zemli iz kosmosa = Exploring the Earth from space; 2015;(2):5–19. (In Russ.). https://doi.org./10.7868/S0205961415020025

3. Serreze M. C., Stroeve J. Arctic Sea ice trends, variability and implications for seasonal ice forecasting. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015;373(2045):20140159. https://doi.org/10.1098/rsta.2014.0159

4. Shalina E.V. Arctic sea ice retreat from satellite passive microwave observations. Sovremennye problem distantsionnogo zondirovaniya Zemli = Current problems in remote sensing of the Earth from space. 2013;10(1):328–336. (In Russ.)

5. Wang X.L., Feng Y., Swail V.R., Cox A. Historical changes in the Beaufort–Chukchi–Bering Seas surface winds and waves, 1971–2013. Journal of Climate. 2015;28(19):7457–7469. https://doi.org/10.1175/JCLI-D-15-0190.1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3