Affiliation:
1. State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Abstract
Changes in the temperature regime of the marine Arctic and the influencing factors are considered based on the current knowledge of the causes of climate change and the use of new data sources. In the Arctic, the warming is developing due to such factors as the increase in the transfer of heat and moisture from the low latitudes. This, in turn, drives the feedbacks in the Arctic climate system, increasing the flow of long-wave radiation to the surface due to rising atmospheric water vapor concentrations and slowing down the growth of the sea ice thickness in winter. The increase in the atmospheric heat transfer to the Arctic is associated with changes in atmospheric circulation, in particular, under the influence of ocean surface temperature anomalies, especially in the low latitudes since the bulk of the heat influx from the from solar radiation and anthropogenic forcing is accumulated here. Analyzing the causes of warming in the Arctic in the 1930s and 40s led researchers to the conclusion that the water influx from the North Atlantic is a factor to consider. Therefore, the influx of warm and salty water is also an important influence on the formation of the climate of the marine Arctic today, which should be taken into account when monitoring the temperature and ice regime of this area. Based on the analysis of the characteristics of climate variability in the marine Arctic and its causes, the article examines representative indicators of climate change in the temperature and ice regime of the marine Arctic and the factors influencing them in the present period.
Publisher
FSBI Arctic and Antarctic Research Institute (FSBI AARI)
Reference22 articles.
1. Stocker T., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds.) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Cambridge: Cambridge University Press; 2013. 1535 p.
2. Alekseev G.V., Kuzmina S.I., Bobylev L.P., Urazgildeeva A.V., Gnatiuk N. Impact of atmospheric heat and moisture transport on the Arctic warming. Int J Climatol. 2019;39(8):3582–35925. https://doi.org/10.1002/joc.6040
3. Semenov V.A. Fluctuations in modern climate caused by feedbacks in the atmosphere — polar ice — ocean system. Fundamental and applied climatology. 2015;1:232–248. (In Russ.)
4. Ivanov V.V. Contemporary changes in hydrometeorological conditions in the Arctic Ocean associated with a decrease in sea ice cover. Hydrometeorology and ecology. 2021;64:407–434. (In Russ.). https://doi.org/10.33933/2713-3001-2021-64-407-434
5. Winton M. Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett. 2006;33:L03701. https://doi.org/10.1029/2005GL025244
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献