Climatic changes of seasonal and inter-annual variability of the ice cover of the Greenland and Barents Seas

Author:

Timokhov L. A.1,Vyazigina N. A.1,Mironov E. U.1,Yulin A. V.1

Affiliation:

1. State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute

Abstract

The structure of the long-period variability of the ice cover of the Barents and Greenland Seas over a long series of observations from 1930 to 2017 is analyzed. In both seas, there is a significant negative linear trend of ice cover for both the winter and summer seasons. Average for the period of 1950–2016 intra-annual changes in ice coverings demonstrate the conjugacy of the seasonal cycles of the Greenland and Barents Seas, but with certain differences. Three homogeneous groups with a similar character of intra-annual changes in the ice area are identified for each sea. Identified succession in a state of ice cover for 2 years.The conjugacy of changes in the average decadal values of sea ice cover in April and August with the average decadal indices of atmospheric circulation AO, AD, PNA, NAO and the index of the thermal state of the North Atlantic AMO is shown. Spectral analysis of the winter and summer ice cover of the Greenland and Barents Seas for the period 1930–2016 confirmed earlier received cyclical fluctuations of 22, 9–11 and 6–7 years.Cross-correlation analysis established a close relationship between the longitudinal changes in the ice cover and the average annual values of the following astrogeophysical parameters, the longitude coordinate of the Earth pole position Y, the Earth axis nutation indices dEps and dPsi, the Earth rotation speed index lod (length of day), Sun solar activity index (annual Wolf number) , the average for six months, the distance from the Sun to Earth in the summer SX-III and the winter SX-III periods. Significant correlation coefficients are quite large (R = |0,30| – |0,56|) for both seas, comparable to the correlation coefficients between the ice cover and average annual air temperature T, show the reality of the ice cover mediated reaction to changes in astrophysical factors. Statistical equations relating the sea ice cover to hydrometeorological and astrogeophysical factors were obtained by multiple correlation. The overall correlation coefficient varies from R = 0,80 to R = 0,87 AT. The Greenland Sea, the share of astrogeophysical factors in the long-term changes in the ice cover of both the winter and summer seasons exceeded the contribution of hydrometeorological factors by 3–4 times. In the Barents Sea, the contribution to the total dispersion of astrogeophysical factors in the winter period is somewhat less than that of hydrometeorological factors, and in the summer period they exceed only 1.4 times. The authors’ approach opens up the possibility of using it to obtain statistical equations for the diagnosis and forecast of long-term and climatic changes in sea-ice cover.

Publisher

FSBI Arctic and Antarctic Research Institute (FSBI AARI)

Reference28 articles.

1. Zakharov V.F. L’dy Arktiki i sovremennye prirodnye protsessy. Arctic ice and modern natural processes. Leningrad: Gidrometeoizdat, 1976: 96 p. [In Russian].

2. Zubakin G.K. Krupnomasshtabnaia izmenchivost’ sostoianiia ledianogo pokrova morei SeveroEvropeiskogo basseina. Large-scale variability of the state of the ice cover of the seas of the North European Basin. Leningrad: Gidrometeoizdat, 1987: 160 p. [In Russian].

3. Mironov E.U. Ledovye usloviia v Grenlandskom i Barentsevom moriakh i ikh dolgosrochnyi prognoz. Ice conditions in the Greenland and Barents Seas and their long-term forecast. St. Petersburg: AARI, 2004: 319 p. [In Russian].

4. Nikiforov EG, Shpayher A.O. Zakonomernosti formirovaniia krupnomasshtabnykh kolebanii gidrologicheskogo rezhima Severnogo Ledovitogo okeana. Patterns of formation of large-scale fluctuations of the hydrological regime of the Arctic Ocean. Leningrad: Gidrometeoizdat, 1980: 269 p. [In Russian].

5. Wiese V.Yu. Klimat morei Sovetskoi Arktiki.Climate of the Seas of the Soviet Arctic, Moscow; Leningrad: Glavsevmorput Publishing, 1940: 124 p. [In Russian].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3