Abstract
Let G be a locally compact group and G† its dual space, that is, the set of all unitary equivalence classes of irreducible unitary representations of G. An important tool for investigating the group algebra of G is the so-called hull-kernel topology of G†, which is discussed in (3) as a special case of the relation of weak containment. The question arises: Given a group G, how do we determine G† and its topology? For many groups G, Mackey's theory of induced representations permits us to catalogue all the elements of G†. One suspects that by suitably supplementing this theory it should be possible to obtain the topology of G† at the same time. It is the purpose of this paper to explore this possibility. Unfortunately, we are not able to complete the programme at present.
Publisher
Canadian Mathematical Society
Cited by
159 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献