Abstract
Herstein and Small have shown (1) that nil rings which satisfy certain chain conditions are nilpotent. In particular, this is true for nil (left) Goldie rings. The result obtained here is a generalization of their result to the case of any nil subring of a Goldie ring.Definition. Lis a left annihilator in the ring R if there exists a subset S ⊂ R with L = {x∈ R|xS= 0}. In this case we write L= l(S). A right annihilator K = r(S) is defined similarly.Definition. A ring R satisfies the ascending chain condition on left annihilators if any ascending chain of left annihilators terminates at some point. We recall the well-known fact that this condition is inherited by subrings.Definition. R is a Goldie ring if R has no infinite direct sum of left ideals and has the ascending chain condition on left annihilators.
Publisher
Canadian Mathematical Society
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献