Author:
Marcus Marvin,Nikolai Paul J.
Abstract
Let V denote a unitary vector space with inner product (x, y). A self-adjoint linear map T: V → V is positive (positive definite) if (Tx, x) ≧ 0 ((Tx, x) ≧ 0) for all x ≠ 0 in V. We write S ≧ T(S > T) if S and T are self-adjoint and S – T ≧ 0 (S – T > 0). If U is a unitary vector space, a function f: Hom(V, V) → Hom(U, U) is monotone idf S ≧ T implies that f(S) ≧ f(T). If both U and V are taken to be the n-dimensional unitary space Cn of n-tuples of complex numbers with standard inner product, then f is a monotone matrix junction, a notion introduced for a more restrictive class of functions by Löwner (3) which has important applications in pure and applied mathematics. For orientation we refer the reader to (1), where several interesting examples of monotone and related functions are displayed in detail.
Publisher
Canadian Mathematical Society
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献