Abstract
Jategaonkar (5) has constructed a class of rings which can be used to provide counterexamples to problems concerning unique factorization in non-commutative domains, the left-right symmetry of the global dimension for a right- Noetherian ring and the transhnite powers of the Jacobson radical of a right- Noetherian ring. These rings have the following property:(W) Every non-empty family of right ideals of the ring R contains exactly one maximal element.In the present paper we wish to consider rings, with unit element, which satisfy property (W). This property means that the right ideals are inverse well-ordered by inclusion, and it is our aim to describe these rings by their order type. Rings of this kind appear as a generalization of discrete valuation rings in R; see (1; 2).In the following, R will always denote a ring with unit element satisfying (W).
Publisher
Canadian Mathematical Society
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献