Abstract
A well-known result of Dembowski and Wagner (4) characterizes the designs of points and hyperplanes of finite projective spaces among all symmetric designs. By passing to a dual situation and approaching this idea from a different direction, we shall obtain common characterizations of finite projective and affine spaces. Our principal result is the following.Theorem 1.A finite incidence structure is isomorphic to the design of points and hyperplanes of a finite projective or affine space of dimension greater than or equal to4if and only if there are positive integers v, k, and y, with μ> 1and(μ– l)(v — k) ≠ (k—μ)2such that the following assumptions hold.(I)Every block is on k points, and every two intersecting blocks are on μ common points.(II)Given a point and two distinct blocks, there is a block containing both the point and the intersection of the blocks.(III)Given two distinct points p and q, there is a block on p but not on q.(IV)There are v points, and v– 2 ≧k>μ.
Publisher
Canadian Mathematical Society
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献