Abstract
For an algebraic number field K there is a similarity between the additive characters defined on the Witt ring W(K), [20], [11], [17], [14, p. 131], and the local root numbers associated to a real orthogonal representation of the absolute Galois group of K, [18], [5]. Using results of Deligne and of Serre, [16], we shall derive in (5.3) a formula expressing the value, at a prime in K, of the additive character on a Witt class in terms of the rank modulo 2, the stable Hasse-Witt invariant and the local root number associated to the real quadratic character defined by the square class of the discriminant. Thus we are able to separate out the contributions made to the value of the additive character by each of the standard Witt class invariants.
Publisher
Canadian Mathematical Society
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献