Abstract
Let V ≠ 0 be a vector space of dimension n over a finite field of order qm for a prime q. Of course, GL(n, qm) denotes the group of -linear transformations of V. With few exceptions, GL(n, qm) is non-solvable. How large can a solvable subgroup of GL(n, qm) be? The order of a Sylow-q-subgroup Q of GL(n, qm) is easily computed. But Q cannot act irreducibly nor completely reducibly on V.Suppose that G is a solvable, completely reducible subgroup of GL(n, qm). Huppert ([9], Satz 13, Satz 14) bounds the order of a Sylow-q-subgroup of G, and Dixon ([5], Corollary 1) improves Huppert's bound. Here, we show that |G| ≦ q3nm = |V|3. In fact, we show thatwhere
Publisher
Canadian Mathematical Society
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献