Abstract
An ovoid in an orthogonal vector space V of type Ω+(2n, q) or Ω(2n – 1, q) is a set Ω of qn–1 + 1 pairwise non-perpendicular singular points. Ovoids probably do not exist when n > 4 (cf. [12], [6]) and seem to be rare when n = 4. On the other hand, when n = 3 they correspond to affine translation planes of order q2, via the Klein correspondence between PG(3, q) and the Ω+(6, q) quadric.In this paper we will describe examples having n = 3 or 4. Those with n = 4 arise from PG(2, q3), AG(2, q3), or the Ree groups. Since each example with n = 4 produces at least one with n = 3, we are led to new translation planes of order q2.
Publisher
Canadian Mathematical Society
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献