Umbilical Submanifolds of Sn × R

Author:

Mendonça Bruno,Tojeiro Ruy

Abstract

AbstractWe give a complete classification of umbilical submanifolds of arbitrary dimension and codimension of ×ℝ, extending the classification of umbilical surfaces in ×ℝ by Souam and Toubiana as well as the local description of umbilical hypersurfaces in × ℝ by Van der Veken and Vrancken. We prove that, besides small spheres in a slice, up to isometries of the ambient space they come in a two-parameter family of rotational submanifolds whose substantial codimension is either one or two and whose profile is a curve in a totally geodesic ×ℝ or ×ℝ, respectively, the former case arising in a one-parameter family. All of them are diffeomorphic to a sphere, except for a single element that is diffeomorphic to Euclidean space. We obtain explicit parametrizations of all such submanifolds. We also study more general classes of submanifolds of × R and ℍn × ℝ. In particular, we give a complete description of all submanifolds in those product spaces for which the tangent component of a unit vector field spanning the factor ℝ is an eigenvector of all shape operators. We show that surfaces with parallel mean curvature vector in ×ℝ and ℍn×ℝ having this property are rotational surfaces, and use this fact to improve some recent results by Alencar, do Carmo, and Tribuzy. We also obtain a Dajczer-type reduction of codimension theorem for submanifolds of × ℝ and ℍn × ℝ.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric flows by parallel hypersurfaces;Illinois Journal of Mathematics;2024-06-01

2. Integral inequalities for closed linear Weingarten submanifolds in the product spaces;Anais da Academia Brasileira de Ciências;2023

3. Umbilical submanifolds of Hk×Snk+1;Differential Geometry and its Applications;2022-04

4. Totally umbilical submanifolds in pseudo-Riemannian space forms;Tsukuba Journal of Mathematics;2021-12-01

5. Totally umbilical hypersurfaces of product spaces;manuscripta mathematica;2021-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3