Abstract
It was established in (5) that the existence of a Hadamard matrix of order 4t is equivalent to the existence of a symmetrical balanced incomplete block design with parameters v = 4t — 1, k = 2t — 1, and λ = t — 1. A block design is completely characterized by its so-called incidence matrix. The existence of a block design with parameters v, k, and λ such that the corresponding incidence matrix is cyclic was shown in (3) to be equivalent to the existence of a cyclic difference set with parameters v, k, and λ. For certain values of the parameters, Hadamard matrices, block designs, and difference sets do coexist.
Publisher
Canadian Mathematical Society
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献