Abstract
A classical theorem states that if a square matrix B over an algebraically closed field F commutes with all matrices X over F which commute with a matrix A over F, then B must be a polynomial in A with coefficients in F (2). Recently Marcus and Khan (1) generalized this theorem to double commutators. Our purpose is to complete the generalization to commutators of any order.Let F be an algebraically closed field and let Fn be the ring of all n by n matrices with elements in F. We define ΔYZ — = [Z, Y] = ZY — YZ for all Y, Z in Fn.
Publisher
Canadian Mathematical Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献