Krull Semigroups and Divisor Class Groups

Author:

Chouinard II Leo G.

Abstract

R. Matsuda has shown that a group ring is a Krull domain if and only if the coefficient ring is a Krull domain and the group is a torsion-free abelian group satisfying the ascending chain condition (ace) on cyclic subgroups [6]. D. F. Anderson has used this to obtain a partial determination of when a semigroup ring is a Krull domain, and under certain circumstances to describe the divisor class group of such a ring ([1], [2]). Using some of Anderson's techniques, but taking a different approach, we arrive at a complete answer of a different nature to these questions. We call a semigroup satisfying the major new conditions arising a Krull semigroup, and define its divisor class group.In particular, every abelian group is the divisor class group of such a ring, and it follows that every abelian group is the divisor class group of a quasi-local ring, which seems to be a new result.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3