Abstract
In 1889, A. A. Markov proved the following inequality:INEQUALITY 1. (Markov [4]). If pn is any algebraic polynomial of degree at most n thenwhere ‖ ‖A denotes the supremum norm on A.In 1912, S. N. Bernstein establishedINEQUALITY 2. (Bernstein [2]). If pn is any algebraic polynomial of degree at most n thenfor x ∈ (a, b).In this paper we extend these inequalities to sets of the form [a, b] ∪ [c, d]. Let Πn denote the set of algebraic polynomials with real coefficients of degree at most n.THEOREM 1. Let a < b ≦ c < d and let pn ∈ Πn. Thenfor x ∈ (a, b).
Publisher
Canadian Mathematical Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献