Abstract
It is shown that if v is an odd prime power, other than a prime of the form 22n + 1, then there exists a Room square of order v + 1.A room square of order 2n, where n is a positive integer, is an arrangement of 2n objects in a square array of 2 side 2n - 1, such that each of the (2n - 1)2 cells of the array is either-empty or contains exactly two distinct objects; each of the 2n objects appears exactly once in each row and column; and each (unordered) pair of objects occurs in exactly one cell.
Publisher
Canadian Mathematical Society
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献