Abstract
Let H = (Hi, j) (1 ≦ i, j ≦ n) be an nk × nk matrix with complex coefficients, where each Hi, j is itself a k × k matrix (n, k ≧ 2). Let |H| denote the determinant of H and let ∥H∥ = |(|H i, j|)| (1 ≦ i, j ≦ n ). The purpose of this note is to prove the following theorem.Theorem. If H is positive definite Hermitian then |H| ≦∥H∥. Moreover, |H| = ∥H∥ if and only if Hi, j = 0 whenever i ≠ j.The case n = 2 of this theorem is contained in [1].
Publisher
Canadian Mathematical Society
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献