Author:
Elekes Márton,Steprāns Juris
Abstract
AbstractA subset X of a Polish group G is called Haar null if there exist a Borel set B ⊃ X and Borel probability measure μ on G such that μ(gBh) = 0 for every g; h ∊ G. We prove that there exist a set X ⊂ R that is not Lebesgue null and a Borel probability measure μ such that μ (X + t) = 0 for every t ∊ R. This answers a question from David Fremlin’s problem list by showing that one cannot simplify the definition of a Haar null set by leaving out the Borel set B. (The answer was already known assuming the Continuum Hypothesis.)This result motivates the following Baire category analogue. It is consistent with ZFC that there exist an abelian Polish group G and a Cantor set C ⊂ G such that for every non-meagre set X ⊂ G there exists a t ∊ G such that C ∩ (X + t) is relatively non-meagre in C. This essentially generalizes results of Bartoszyński and Burke–Miller.
Publisher
Canadian Mathematical Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Haar null and Haar meager sets: a survey and new results;Bulletin of the London Mathematical Society;2020-06-21
2. Negligible Sets in Infinite-Dimensional Spaces;Analysis Mathematica;2018-09
3. Naively Haar null sets in Polish groups;Journal of Mathematical Analysis and Applications;2017-02
4. Haar null sets without G δ hulls;Israel Journal of Mathematics;2015-09