Author:
Damelin S. B.,Lubinsky D. S.
Abstract
AbstractWe investigate mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials pn(W2, x) for Erdös weights W2 = e-2Q. The archetypal example is Wk,α = exp(—Qk,α), whereα > 1, k ≥ 1, and is the k-th iterated exponential. Following is our main result: Let 1 < p < ∞, Δ ∊ ℝ, k > 0. Let Ln[f] denote the Lagrange interpolation polynomial to ƒ at the zeros of pn(W2, x) = pn(e-2Q, x). Then forto hold for every continuous function ƒ: ℝ —> ℝ satisfyingit is necessary and sufficient that
Publisher
Canadian Mathematical Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献