Constructing Double Magma on Groups Using Commutation Operations

Author:

Edmunds Charles C.

Abstract

AbstractA magma (M, *) is a nonempty set with a binary operation. A double magma (M, *, •) is a nonempty set with two binary operations satisfying the interchange law (w * x) • (y * z) = (w • y)*(x•z). We call a double magma proper if the two operations are distinct, and commutative if the operations are commutative. A double semigroup, first introduced by Kock, is a double magma for which both operations are associative. Given a non-trivial group G we define a system of two magma (G, *, •) using the commutator operations x * y = [x, y](= x−1 y−1x y) and xy = [y, x]. We show that (G, *, •) is a double magma if and only if G satisfies the commutator laws [x, y; x, z] = 1 and [w, x; y, z]2 = 1. We note that the first lawdefines the class of 3-metabelian groups. If both these laws hold in G, the double magma is proper if and only if there exist x0, y0G for which [x0 , y0]2 ≠ 1. This double magma is a double semigroup if and only if G is nilpotent of class two. We construct a specific example of a proper double semigroup based on the dihedral group of order 16. In addition, we comment on a similar construction for rings using Lie commutators.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extended magmas and their applications;Journal of Algebra and Its Applications;2016-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3